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Gaussian Density

The probability density of a D-dimensional Gaussian with mean vector µ and
covariance matrix Σ is given by

p(x|µ,Σ) = N(x|µ,Σ) =
1

(2π)D/2|Σ|1/2 exp
(
− 1

2 (x − µ)>Σ−1(x − µ)
)
,

and we also write
x|µ,Σ ∼ N(x|µ,Σ).

The covariance matrix Σ must be symmetric and positive definite.

In the special (scalar) case where D = 1 we have

p(x|µ,σ2) =
1√

2πσ2
exp

(
− 1

2 (x− µ)
2/σ2),

where σ2 is the variance and σ is the standard deviation.

The standard Gaussian has µ = 0 and Σ = I (the unit matrix).
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Parametrisation

There are two commonly used parametrisations of Gaussians
• standard parametrisation:

• mean µ and
• covariance Σ

• natural parametrisation:
• natural mean ν = Σ−1µ and
• precision matrix R = Σ−1.

Different operations are more convenient in either parametrisation.
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Gaussian Pictures

The mean corresponds to the location or center of the distribution.

In one dimension, the square root of the variance corresponds to the width of the
distribution.

In multiple dimensions, the eigen-vectors of the covariance matrix give the
principal axis of the elliptical equi-probability contours of the distribution, and
the square root of the eigenvalues the width of the distribution in the
corresponding directions.
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Conditionals and Marginals of a Gaussian, pictorial

 

 

joint Gaussian
conditional

 

 

joint Gaussian
marginal

Both the conditionals p(x|y) and the marginals p(x) of a joint Gaussian p(x,y)
are again Gaussian.

Rasmussen, Hernàndez-Lobato & Turner Gaussian Densities April 20th, 2018 5 / 11



Conditionals and Marginals of a Gaussian, algebra

If x and y are jointly Gaussian

p(x, y) = p
([ x

y

])
= N

([ a
b

]
,
[
A B

B> C

])
,

we get the marginal distribution of x, p(x) by

p(x, y) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(x) = N(a, A),

and the conditional distribution of x given y by

p(x, y) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(x|y) = N(a+BC−1(y− b), A−BC−1B>),

where x and y can be scalars or vectors.
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Gaussian Properties

Gaussians are closed both under marginalisation and conditioning.
If x and y are jointly Gaussian [

x
y

]
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Kullback-Leibler Divergence (Relative Entropy)

The Kullback-Leibler (KL) divergence between continuous distributions is

KL(q(x)||p(x)) =

∫
q(x) log

q(x)

p(x)
dx.

The KL divergence is an asymmetric measure of distance between distributions.
The KL divergence between two Gaussians is

KL(N0||N1) = 1
2 log |Σ1Σ

−1
0 |+ 1

2 tr
(
Σ−1

1

(
(µ0 − µ1)(µ0 − µ1)

> + Σ0 − Σ1
))

.
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KL matching constrained Gaussians

It is often convenient to approximate one distribution with another, simpler one,
by finding the closest match within a constrained family.

Minimizing KL divergence between a general Gaussian Ng and a factorized
Gaussian Nf will match the means µf = µg and for the covariances either:

∂KL(Nf||Ng)

∂Σf
= − 1

2Σ
−1
f + 1

2Σ
−1
g = 0 ⇒ (Σf)ii = 1/(Σ−1

g )ii,

or
∂KL(Ng||Nf)

∂Σf
= 1

2Σ
−1
f − 1

2Σ
−1
f ΣgΣ

−1
f = 0 ⇒ (Σf)ii = (Σg)ii.

Interpretation:
• averaging wrt the factorized Gaussian, the fitted

variance equals the conditional variance of Σg,
• averaging wrt the general Gaussian, the fitted

variance equals the marginal variance of Σg,

with straight forward generalization to block diagonal
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Appendix: Some useful Gaussian identities

If x is multivariate Gaussian with mean µ and covariance matrix Σ

p(x;µ,Σ) = (2π|Σ|)−D/2 exp
(
− (x − µ)>Σ−1(x − µ)/2

)
,

then

E[x] = µ,

V[x] = E[(x − E[x])2] = Σ.

For any matrix A, if z = Ax + b then z is Gaussian and

E[z] = Aµ+ b,

V[z] = AΣA>.
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Matrix and Gaussian identities cheat sheet

Matrix identities
• Matrix inversion lemma (Woodbury, Sherman & Morrison formula)

(Z+UWV>)−1 = Z−1 − Z−1U(W−1 + V>Z−1U)−1V>Z−1

• A similar equation exists for determinants

|Z+UWV>| = |Z| |W| |W−1 + V>Z−1U|

The product of two Gaussian density functions

N(x|a,A)N(P> x|b,B) = zc N(x|c,C)

• is proportional to a Gaussian density function with covariance and mean

C =
(
A−1 + P B−1P>

)−1
c = C

(
A−1a + P B−1 b

)
• and has a normalizing constant zc that is Gaussian both in a and in b

zc = (2π)−
m
2 |B+ P>AP|−

1
2 exp

(
−

1
2
(b− P> a)>

(
B+ P>AP

)−1
(b− P> a)

)
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